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Abstract

This paper deals with problems which fall into the domain of selfish scheduling: a protocol is in
charge of building a schedule for a set of tasks without directly knowing their length. The protocol
gets these informations from agents who control the tasks. The aim of each agent is to minimize the
completion time of her task while the protocol tries to minimize the maximal completion time. When
an agent reports the length of her task, she is aware of what the others bid and also of the protocol’s
algorithm. Then, an agent can bid a false value in order to optimize her individual objective function.
With erroneous information, even the most efficient algorithm may produce unreasonable solutions. An
algorithm is truthful if it prevents the selfish agents from lying about the length of their task. The central
question in this paper is:“How efficient a truthful algorithm can be?We study the problem of scheduling
selfish tasks on parallel identical machines. This questionhas been raised by Christodoulou et al [8] in
a distributed system, but it is also relevant in centrally controlled systems. Without considering side
payments, our goal is to give a picture of the performance under the condition of truthfulness.

Keywords: scheduling, algorithmic game theory, truthful algorithms.



1 Introduction

The Internet is a complex distributed system involving manyautonomous entities (agents). Protocols orga-
nize this network, using the data held by these agents and trying to maximize the social welfare. Agents
are often supposed to be trustworthy but this assumption is unrealistic in some settings as they might try
to manipulate the protocol by reporting false information in order to maximize their own profit. With false
information, even the most efficient protocol may lead to unreasonable solutions if it is not designed to cope
with the selfish behavior of the single entities. Then, it is natural to ask the following question:How efficient
a protocol can be if it guarantees that no agent has incentiveto lie?

In this paper, we deal with the problem of schedulingn selfish tasks onm identical parallel machines.
We consider two distinct settings in which the aim is to minimize themakespan, i.e. the maximum com-
pletion time. The first setting is centralized, while the second one is distributed. Both problems share the
following characteristics. Each task is owned by an agent1. The lengthli of a taski is known to its owner
only. The agents, considered as players of a non-cooperative game, want to minimize the completion time
of their tasks. The protocol builds the schedule with rules known to all players and fixed in advance. In
particular, mixing the execution of two jobs (like round-robin) is not allowed. Before the execution begins,
the agents report a value representing the length of their tasks. We assume that every agent behave rationally
and selfishly. Each one is aware of the situation the others face and tries to optimize her own objective
function. Thus an agent can report a value which is not equal to her real length. Practically, an agent can
add “fake” data to artificially increase the length of her task if it decreases her completion time. This selfish
behavior can prevent the protocol to produce a reasonable (i.e. close to the social welfare) schedule. Without
considering side payments, which are often used with the aimof inciting the agents to report their real value,
some algorithmic tools can simultaneously offer a guarantee on the quality of the schedule (its makespan is
not arbitrarily far from the optimum) and guarantee that thesolution istruthful (no agent can lie and improve
her own completion time). For both centralized and distributed settings, our goal is to give lower and upper
bounds on the performance under the condition of truthfulness. It is important to mention that we do not
strictly restrict the study to polynomial time algorithms.

Since the length of a task is private, each agent bids a value which represents the length of her task. We
assume that an agent cannot shrink the length of her task (otherwise she will not get her result), but if she
can decrease her completion time by bidding a value larger than the real one, then she will do so. We also
assume that an agent does not report a distribution on different lengths. A player may play according to a
distribution, but she just announces the outcome, so the protocol does not know if she lies.

In the centralized setting, the strategy of agenti is a valuebi representing the length of her task. The
protocol, called an algorithm, is in charge of indicating when and on which machine a task will be scheduled.
An algorithm istruthful when no agent has incentive to report a false value. We focus on the performance
of truthful algorithms with respect to the makespan of the schedule. In particular, we are interested in giving
lower and upper bounds on theapproximation ratiothat a (deterministic or randomized) truthful algorithm
can achieve. For example, a truthful algorithm can be obtained by greedily scheduling the tasks following the
increasing order of their lengths. This algorithm, known asSPT, produces a(2− 1/m)-approximate sched-
ule [11]. Are there truthful algorithms with better approximation guarantee for the considered scheduling
problem?

In thedistributed setting, the strategy of agenti is a couple(Mi, bi), whereMi is the machine which will
execute the task andbi is the length bidden. As opposed to the centralized setting,the agents choose their
machine andMi can be a probability distribution on different machines. The protocol, called acoordination

1We equally refer to a task and its owner since we assume that two tasks cannot be held by the same agent.
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mechanismin this context [8], consists in selecting ascheduling policyfor each machine (e.g. scheduling
the tasks in order of decreasing lengths). An important and natural condition is due to the decentralized
nature of the problem: the scheduling on a machine should depend only on the tasks assigned to it, and
should be independent of the tasks assigned to the other machines. A coordination mechanism istruthful
when no agent has incentive to lie on the length of her task. Using theprice of anarchy[14], we study the
performance of truthful coordination mechanisms with respect to the makespan. The price of anarchy of a
coordination mechanism is, in the context, equal to the largest ratio between the makespan of a schedule
where agent’s strategies form aNash equilibrium2 and the optimal makespan.

Interestingly, it is possible to slightly transform the SPTalgorithm in a truthful coordination mechanism,
as suggested in [8]: each machinePj schedules its tasks in order of increasing lengths, and addsat the very
beginning of the schedule a small delay equal to(j − 1)ε times the length of the first task. By this way, and
if ε is small enough, the schedule obtained in a Nash equilibriumis similar to the one returned by the SPT
algorithm (excepted the small delays at the beginning of theschedule). Whenε is negligible, the price of
anarchy of this coordination mechanism is2−1/m. Are there truthful coordination mechanisms with better
price of anarchy for the considered scheduling problem?

For both centralized algorithms and coordination mechanisms, we consider the two following execution
models:

• Strong model of execution: If the owner of taski bidsbi ≥ li, then the execution time will still beli
(i.e. the task will be completedli time units after its start).

• Weak model of execution: If the owner of taski bidsbi ≥ li, then the execution time will bebi (i.e.
the task will be completedbi time units after its start).

The strong execution model corresponds to the case where tasks have to be linearly executed – from
their beginning to their end–, whereas the weak execution model corresponds to the case where a task can
be executed in any order3 (and the “fake” part of the task is not anymore necessarily executed at the end),
or when the machine returns the result of the task only at the end of its execution. Depending on the
applications of the scheduling problem, either the strong or the weak model of execution will be used.

Related work

The field ofMechanism Designcan be useful to deal with the selfishness of the agents. Its main idea is to
pay the agents to convince them to perform strategies that help the system to optimize a global objective
function. The most famous technique for designing truthfulmechanisms is perhaps the Vickrey-Clarke-
Groves (VCG) mechanism [20, 7, 12]. However, when applied tocombinatorial optimization problems, this
mechanism guarantees the truthfulness under the hypothesis that the objective function isutilitarian (i.e. the
value of the objective function is equal to the sum of the agents individual objective functions) and that the
mechanism is able to compute the optimum. Archer and Tardos introduce in [4] a method which allows to
design truthful mechanisms for several combinatorial optimization problems to which the VCG mechanism
does not apply. However, both approaches cannot be applied to our problem.

Scheduling selfish agents has been intensively studied these last years, started with the seminal work of
Nisan and Ronen [17], and followed by a series of papers [1, 2,4, 6, 9, 15, 16]. However, all these works
differ from ours since in their case, the selfish agents are the machines while here we consider that the agents

2Situation in which no agent can unilaterally change her strategy and improve her own completion time. A Nash equilibrium
is pure if each agent has a pure strategy : each agent chooses only onemachine. A Nash equilibrium ismixedif the agents give a
probability distribution on the machines on which they willgo.

3Nevertheless, the execution of two jobs is never interlaced.
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are the tasks. Furthermore, they use side payments whereas we focus on truthful algorithms without side
payments.

A more closely related work is the one of Christodoulou et al [8] who considered the same model but
only in the distributed context of coordination mechanisms. They proposed different coordination mecha-
nisms with a price of anarchy better than the one of the SPT coordination mechanism. Nevertheless, these
mechanisms are not truthful. In [13], the authors gave coordination mechanisms for the same model for
related machines (i.e. machines can have different speeds), but their mechanisms are also not truthful.

In [3], the authors gave a truthful randomized algorithm forthe strong model of execution defined before,
and they gave, for the weak model of execution, a coordination mechanism which is truthful if there are two
machines and if the lengths of the tasks are powers of a certain constant. An optimal (but exponential time)
truthful randomized algorithm and a truthful randomized PTAS for the weak model of execution appear in
[18, 19]. The technique consists in computing an optimal (resp. a(1 + ε)-approximate) schedule and each
machine executes its tasks in a random order (the truthfulness is due to the introduction of fictitious tasks
which guarantee that all the machines have the same load).

Another related work is the one of Auletta et al. who considered in [5] the problem of scheduling selfish
tasks in a centralized case. Their work differs from ours since they considered that each machine uses a
round and robin policy and thus that the completion of each task is the completion time of the machine on
which the task is (this model is known as the KP model). They considered that the tasks can lie in both
directions, and that there are some payments.

Contribution and organization of the article

Sections 3 and 4 are devoted to the centralized setting. In particular, we study the strong (resp. weak) model
of execution in Section 3 (resp. Section 4). Results on the distributed setting are presented in Section 5 for
both execution models.

Table 1 and Table 2 give a summary of the bounds that we are aware of (those with a† are presented in
this article). LB stands for “Lower bound”, UB for “Upper bound” and NE for “Nash equilibria”.

Deterministic Randomized
LB UB LB UB

centralized setting 2 − 1

m
† 2 − 1

m
[8] 3

2
− 1

2 m
† 2 − 1

m+1
( 5

3
+ 1

3m
) [3]

distributed 2 − 1

m
(pure NE)† 2 − 1

m
[8] 3

2
− 1

2 m
† 2 − 1

m

setting 3

2
− 1

2 m
(mixed NE)†

Table 1: Bounds form identical machines for the strong model of execution.

Deterministic Randomized
LB UB LB UB

centralized setting m = 2 : 1 +
√

105−9

12
> 1.1 † 4

3
− 1

3 m
† 1 [18, 19] 1 [18, 19]

m ≥ 3 : 7

6
> 1.16 †

distributed 1+
√

17

4
> 1.28 (pure NE)† 2 − 1

m
1 +

√
13−3

4
> 1.15 † 2 − 1

m

setting (pure NE)

Table 2: Bounds form identical machines for the weak model of execution.
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2 Notations

We are givenm machines (or processors){P1, . . . , Pm}, andn tasks{1, . . . , n}. Let li denote the real
execution time (or length) of taski. We use the identification numbers to compare tasks of the same (bidden)
lengths: we will say that taski, which bidsbi, is larger than taskj, which bidsbj , if and only if bi > bj or
(bi = bj andi > j). It is important to mention that an agent cannot lie on her (unique) identification number.

A randomized algorithm can be seen as a probability distribution over deterministic algorithms. We say
that a (randomized) algorithm is truthful if for every task the expected completion time when she declares
her true length is smaller than or equal to her expected completion time in the case where she declares a
larger value. More formally, we say that an algorithm istruthful if Ei[li] ≤ Ei[bi], for everyi andbi ≥ li,
whereEi[bi] is the expected completion time of taskTi if she declaresbi. In order to evaluate the quality of
a randomized algorithm, we use the notion of expected approximation ratio.

We will refer in the sequel to the list scheduling algorithmsLPT and SPT, where LPT (resp. SPT) [11]
is the algorithm which greedily schedules the tasks, sortedin order of decreasing (resp. increasing) lengths:
this algorithm schedules, as soon as a machine is available,the largest (resp. smallest) task which has not
yet been scheduled. An LPT (resp. SPT) schedule is a schedulereturned by the LPT (resp. SPT) algorithm.

3 About truthful algorithms for the strong model of execution

3.1 Deterministic algorithms

We saw that the deterministic algorithm SPT, which is(2 − 1

m
)-approximate, is truthful. Let us now show

that there is no truthful deterministic algorithm with a better approximation ratio.

Theorem 3.1 Let us consider that we havem identical machines. There is no truthful deterministic algo-
rithm with an approximation ratio smaller than2 − 1

m
.

Proof. Let us suppose that we haven = m (m − 1) + 1 tasks of length 1. Let us suppose that we have
a truthful deterministic algorithmA which has an approximation ratio smaller than(2 − 1/m) Let t be the
task which has the maximum completion time,Ct, in the schedule returned byA. We know thatCt ≥ m.

Let us now suppose that taskt bidsm instead of 1. We will show that the completion time oft is then
smaller thanm. Let OPT be the makespan of an optimal solution where there aren − 1 = m (m − 1)
tasks of length 1 and a task of lengthm. We have:OPT = m. Since te approximation ratio of algorithm
A is smaller than(2 − 1/m), the makespan of the schedule it builds with this instance issmaller than
(2 − 1/m)m = 2m − 1. Thus, the task of lengthm starts before time(m − 1). Thus, if taskt bids m
instead of1, it will start before timem−1 and be completed one time unit after, that is before timem. Thus
taskt will decrease its completion time by biddingm instead of 1, and algorithmA is not truthful. ut

Note that we can generalize this result in the case of relatedmachines : we havem machinesP1, . . . , Pm,
such that machinePi has a speedvi, v1 = 1, andv1 ≤ . . . ≤ vm. By this way, we obtain that there does not
exist truthful deterministic algorithms with an approximation ratio smaller than2 − vm

∑

m

i=1
vi

(the proof is in

the Appendix).
Concerning the strong model of execution, no deterministicalgorithm can outperform SPT in the cen-

tralized setting. Then, it is interesting to consider randomized algorithms to achieve a better approximation
ratio.
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3.2 Randomized algorithms

In [3], the authors present a randomized algorithm which consists in returning a LPT schedule with a proba-
bility 1/(m+1) and a slightly modified SPT schedule with a probabilitym/(m+1). They obtain a truthful
algorithm whose expected approximation ratio is1

m+1
(4

3
− 1

3m
) + m

m+1
(2− 1

m
) = 2− 1

m+1
(5

3
+ 1

3m
). This

ratio is an upper bound which improves2 − 1

m
but no instance showing the tightness of their analysis is

provided. A good candidate should be simultaneously a tightexample for both LPT and SPT schedules.
We are not aware of the existence of such an instance and we believe in a future improvement of this upper
bound. The following Theorem provides a lower bound.

Theorem 3.2 Let us consider that we havem identical machines. There is no truthful randomized algorithm
with an approximation ratio smaller than3

2
− 1

2m
.

Proof. Let ε > 0, and let us suppose that we have a truthful algorithmA whose expected approximation
ratio is(3/2 − 1/(2m) − ε).

Let us consider that we havexm (m − 1) + m tasks of length 1, wherex is a positive integer such that
x > 1/(2 εm)−1/(2 εm2)−1/m. Sincem machines are available, the optimal makespan isx (m−1)+1.
With any randomized algorithm (includingA), there is a taskt whose expected completion time is at least
(x (m − 1))/2 + 1. Since algorithmA is truthful, t should not improve its completion time by bidding
xm + 1 instead of 1. Suppose thatt unilaterally lies and bidsxm + 1 instead of 1. For algorithmA,
there is thenxm (m − 1) + m − 1 tasks of length 1 and a task of lengthxm + 1. The optimal makespan
is thenxm + 1 and the expected makespan of the schedule returned byA is smaller than or equal to
(3/2 − 1/(2m) − ε)(xm + 1). As a consequence, the expected completion time of the task of length
xm+1 is also bounded above by(3/2− 1/(2m)− ε)(xm+1). Sincet increased its length withxm time
units, its real expected completion time is smaller than or equal to(3/2−1/(2m)−ε)(xm+1)−xm. With
x > 1/(2εm)−1/(2εm2)−1/m, the expected completion time oft is strictly smaller thanx (m−1)/2+1
when it bidsxm + 1 and larger than or equal to(x(m − 1) + 2)/2 when it bids its true length 1. This
contradicts the fact thatA is truthful. ut

Note that we can generalize this result in the case of relatedmachines : we havem machinesP1, . . . , Pm,
such that machinePi has a speedvi, v1 = 1, andv1 ≤ . . . ≤ vm. By this way, we obtain that there does
not exist truthful algorithms with an approximation ratio smaller than3

2
− vm

2
∑

m

i=1
vi

(the proof is in the

Appendix).

4 About truthful algorithms for the weak model of execution

4.1 A truthful deterministic algorithm

We saw in the Section 3 that SPT is a truthful and(2−1/m)-approximate algorithm for the strong model of
execution, and that no truthful deterministic algorithm can have a better approximation ratio. If we consider
the weak model of execution, we can design a truthful deterministic algorithm with a better performance
guarantee (see Table 3).

Theorem 4.1 LPTmirror is a deterministic, truthful and(4

3
− 1

3m
)-approximate algorithm.

Proof. We are givenn tasks with true lengthsl1, . . . , ln. Let us suppose than each task has bidden a value,
and that taski bids bi > li. This can make the taski start earlier inσLPT but never later. In addition, the
optimal makespan wheni bidsbi > li is necessarily larger than or or equal to the optimal makespan when
taski reports its true length. LetSi be the date at which taski starts to be executed inσLPT . The completion
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LPTmirror

Input: m identical machines andn tasks{1, . . . , n} which bid lengthsb1, . . . , bn

Make a scheduleσLPT with theLPT list algorithm.
Let COPT

max be the optimal makespan.
Let p(i) be the machine on which the taski is executed inσLPT .
Let Ci be date at which the taski ends inσLPT .

Output: The schedule in which taski is executed on machinep(i)
and starts at time(4/3 − 1/(3m))COPT

max − Ci.

Table 3: A truthful deterministic algorithm for the weak model of execution

time of taski in LPTmirror is (4/3 − 1/(3m))OPT − Ci + bi = (4/3 − 1/(3m))OPT − Si because
Si = Ci − bi. By biddingbi > li, taski can only increase its completion time in the schedule returned by
LPTmirror becauseOPT does not decrease andSi does not increase. Thus taski does not have incentive
to lie.

Since the approximation ratio of the schedule obtained withthe LPT list algorithm is at most(4/3 −
1/(3m)) [11], the schedule returned byLPTmirror is clearly feasible and its makespan is, by construction,
(4/3 − 1/(3m))-approximate. ThusLPTmirror is a truthful and(4

3
− 1

3m
)-approximate algorithm. ut

Note thatLPTmirror is not a polynomial time algorithm, since we need to know the value of the
makespan in an optimal solution, which is an NP-hard problem[10]. However, it is possible to have a
polynomial time algorithm which is(4/3 − 1/(3m))-approximate, even if some tasks do not bid their true
values. Consider the following simple algorithm: we first compute a scheduleσLPT with the LPT algorithm.
Let p(i) be the machine on which the taski is executed inσLPT , let Ci be the completion time of taski in
σLPT , and letCmax be the makespan ofσLPT . We then compute the final scheduleσ′ in which taski is
scheduled onp(i) and starts at timeCmax − Ci.

We can show that this algorithm is(4/3 − 1/(3m))-approximate (i.e. the schedule returned by this
algorithm is at most(4/3 − 1/(3m)) times larger than the optimal schedule in which all the tasksbid
their true values). We can show this by the following way. We suppose that all the tasks excepti have
bidden some values. LetσLPT (bi) be the scheduleσLPT obtained wheni bids bi, let Si(bi) be the date
at which taski starts to be executed inσLPT (bi), and letCmax(σLPT (bi)) be the makespan ofσLPT (bi).
The completion time of taski (which bidsbi) in σ′ is equal toCmax(σLPT (bi)) − Si(bi). Since with
the LPT algorithm, tasks are scheduled in decreasing order of lengths, if bi > li then Si(bi) ≤ Si(li).
Thus, whatever the values bidden by the other tasks are,i has incentive to lie and bidbi > li only if
Cmax(σLPT (bi)) < Cmax(σLPT (li)). Since this is true for each task, no task will unilaterally lie unless this
decreases the makespan of the schedule. The makespan of the scheduleσ′ in which all the tasks bid their
true values is(4/3 − 1/(3m))-approximate, and then the solution returned by this algorithm will also be
(4/3 − 1/(3m))-approximate.

4.2 Deterministic algorithms : lower bounds

Theorem 4.2 Let us consider that we have two identical machines. There isno truthful deterministic algo-
rithm with an approximation ratio smaller than1 + (

√
105 − 9)/12 ≈ 1.1039.
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Proof. For the sake of simplicity, we first prove this theorem with a ratio 1.1. At the end of the proof, we
simply replace some numerical values to get the bound1 + (

√
105 − 9)/12.

Let us suppose that we have a truthful algorithmA with an approximation ratioρ < 1.1. Let I be
the following instance: one task of length 5, one task of length 4 and three tasks of length 3. The optimal
makespan is 9. WhenI is the input,A returns a scheduleσ whose makespan is (strictly) smaller than9.9.
SinceA is a deterministic algorithm, it must execute the three tasks of length3 on the same machine. Then,
two of them have a completion time larger than or equal to 6. Let I ′ be the following instance: two tasks of
length 5, one task of length 4 and two tasks of length 3. The optimal makespan is10. WhenI ′ is the input,
A returns a scheduleσ′ whose makespan is (strictly) smaller than11. SinceA is a deterministic algorithm,
it must execute the two tasks of length5 on the same machine. Then, one task of length 5 ends strictly
before 6 time units (the first to be scheduled).

SinceA is truthful, no task can bid a larger length and improve its completion time. Then, among the
two tasks of length 3 which are completed after 6 time units inσ, none can bid5 and be the task which ends
strictly before 6 time units inσ′. We now show thatA cannot avoid this since its approximation ratio is
strictly smaller than1.1.

Let ID = {a, b, c, d} be a set of4 distinct identification numbers (id stands foridentification numberin
the sequel). For eachx ∈ ID, we defineIx as an instance similar toI and for which the ids are assigned
as follows: the task of length 5 gets the idx and the3 tasks of length3 get an id inID − {x} (the task
of length 4 is always given ide /∈ ID). Let σx be the schedule returned byA whenIx is the input. Let
S = {Ix | x ∈ ID}. We have|S| = 4.

For each couple{x, y} ⊂ ID, we defineI ′x,y as an instance similar toI ′ and for which the ids are
assigned as follows: the two tasks of length 5 get the idsx andy, while the two tasks of length3 get their
ids fromID − {x, y} (the task of length 4 is still given ide). Let σ′

x,y be the schedule returned byA when
I ′x,y is the input. LetS′ = {I ′x,y | {x, y} ⊂ ID}. We have|S′| = 6.

Let f : S′ → S be a function such thatf(I ′x,y) = Ix if the task with idx is scheduled after the one
with id y in σ′

x,y, otherwisef(I ′x,y) = Iy. Since|S′| > |S|, there exists a couple of instances inS′ which
both have the same image inS by f . Without loss of generality, we suppose that these instances areI ′a,b

andI ′a,c. Moreover, we suppose thatf(I ′a,b) = f(I ′a,c) = Ia. SinceIa contains three tasks of length 3 (with
ids b, c andd) which are scheduled on the same machine inσa, two of them have a completion time larger
than or equal to6. This set of two tasks must have a nonempty intersection with{b, c}. Without loss of
generality, we suppose that taskb with length 3 has a completion time larger than or equal to 6 inσa. Due
to the definition off , b can bid5 instead of3 and be executed beforea in σ′

a,b. As previously observed,b
will then end strictly before 6 time units. As a consequence,A cannot be a truthful andρ-approximate with
ρ < 1.1.

Using the same technique with slightly modified instances, we can get an improved lower bound. Indeed
A cannot be a truthful andρ-approximate withρ < 1 + (

√
105 − 9)/12 ≈ 1.1039. InstanceI contains

three tasks of length 2, one task of length2 + 2ε and one task of length3 + ε. InstanceI ′ contains two
tasks of length 2, one task of length2 + 2ε and two tasks of length3 + ε. The bound is obtained when
ε = (

√
105 − 9)/4. ut

The following Theorem is an extension of Theorem 4.2 where more than two machines are available.
The proof is in the Appendix because the proving technique issimilar.

Theorem 4.3 Let us consider that we havem ≥ 3 identical machines. There is no truthful deterministic
algorithm with an approximation ratio smaller than7/6.
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We supposed in Theorems 4.2 and 4.3 that the solution dependson the length and the identification
number of each task (even those which can be identified with their unique length). This assumption is,
in a sense, “stronger” than the usual one since we suppose that the solution returned by an algorithm for
two similar instances (same number of tasks, same lengths but different identification numbers) can be
completely different. If we relax this assumption, i.e. if identification numbers are only required for the
tasks which have the same length, the bound presented in Theorem 4.2 can be improved to7/6 (see the
proof in the Appendix).

5 About truthful coordination mechanisms

Let ρ ≥ 1. If there is no truthful deterministic algorithm which has an approximation ratio ofρ, then there is
no truthful deterministic coordination mechanism which always induce pure Nash equilibria and which has
a price of anarchy smaller than or equal toρ. Indeed, if this was not the case, then the deterministic algo-
rithm which consists in building the schedule obtained in a pure Nash equilibrium with thisρ-approximate
coordination mechanism would be aρ-approximate truthful deterministic algorithm.

Likewise, if there is no truthful (randomized) algorithm which has an approximation ratio ofρ, then
there is no truthful coordination mechanism which has a price of anarchy smaller than or equal toρ. Indeed,
if this was not the case, the algorithm which consists in building the schedule obtained in a Nash equilibrium
with thisρ-approximate coordination mechanism would be aρ-approximate truthful algorithm.

This observation leads us to the following results for the strong model of execution. We deduce from
Theorem 3.1 that there is no truthful deterministic coordination mechanism which always induce pure Nash
equilibria and which has a price of anarchy smaller than2 − 1/m. Thus there is no truthful coordination
mechanism which performs better than the truthful SPT coordination mechanism, whose price of anarchy
tends towards2 − 1/m. We deduce from Theorem 3.2 that there is no truthful coordination mechanism
which has a price of anarchy smaller than3

2
− 1

2 m
. We now consider the weak model of execution.

Theorem 5.1 If we consider the weak model of execution, there is no truthful deterministic coordination
mechanism which induces pure Nash equilibria, and which hasa price of anarchy smaller than1+

√
17

4
≈

1.28.

Proof. Let us first prove this result in the case where there are two machines,P1, andP2. Let ε > 0. Let
us suppose that there exists a truthful coordination mechanism M with a price of anarchy of1+

√
17

4
− ε.

Let us consider the following instanceI1: three tasks of length 1. SinceM is a deterministic coordination
mechanism which induces pure Nash equilibria, there is at least a task inI1 which has a completion time
larger than or equal to2. Let t be such a task.

Let us first consider this instanceI2: we have two tasks of length−1+
√

17

2
≈ 1.56. SinceM is (1+

√
17

4
−

ε)-approximate, there is one task on each machine, and each task is completed before time−1+
√

17

2
×

1+
√

17

4
= 2. Thus, when it has a task of length−1+

√
17

2
, each machine must end it before time2.

Let us now consider the following instanceI3: two tasks of length 1, and a task of length−1+
√

17

2
. Since

M is (1+
√

17

4
− ε)-approximate, the task of length−1+

√
17

2
is necessarily alone on its machine (without loss

of generality, onP2). As we have seen it,P2 must schedule this task before time2. Thus, taskt of instance
I1, has incentive to bid−1+

√
17

2
instead of 1: by this way it will end before time 2, instead of atime larger

than or equal to 2.
We can easily extend this proof in the case where there are more than 2 machines, by havingm + 1 tasks of
length 1 inI1; m tasks of length−1+

√
17

2
in I2; andm tasks of length1 and a task of length−1+

√
17

2
in I3.

ut
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Theorem 5.2 If we consider the weak model of execution, there is no truthful coordination mechanism
which induces pure Nash equilibria, and which has a price of anarchy smaller than1 +

√
13−3

4
≈ 1.15.

Proof. Let us first prove this result in the case where there are two machines,P1, andP2. Let ε > 0.
Let us suppose that there exists a truthful coordination mechanismM with a price of anarchy ofρ < 2+α

2

(with α < 1). Let us consider the following instanceI1: three tasks of length 1. SinceM is a coordination
mechanism which induces pure Nash equilibria, there is at least a task inI1 which has a completion time
larger than or equal to1.5 (because there is a machine where there is at least 2 tasks). Let t be such a
task. Let us suppose thatt bids1 + α (with α ≤ 1). Sinceρ < 2+α

2
, then taskt is alone on its machine

(without loss of generality, onP1), otherwise the makespan of the schedule would be greater thanρ times
the makespan of an optimal schedule which is 2. SinceM is truthful, the expected completion time oft
when it bids1 + α should be larger than or equal to1.5 (otherwiset would have incentive to lie). Thus,
when machineP1 has a task of length1 + α, the expected completion time of this task is at least1.5. Let
us consider the instanceI2 where we have two tasks of length1 + α. Sinceρ < 2+α

2
< 2, there is one task

on each machine. Since, when there is one task of length1 + α on machineP1, the expected completion
time of this task is larger than or equal to 1.5, and since the optimal makespan of a schedule of these tasks
is 1 + α, then, the price of anarchy ofM should be larger than or equal to1.5

1+α
. By setting2+α

2
= 1.5

1+α
, we

obtainα =
√

13−3

2
, and thusρ > 1 +

√
13−3

2
> 1.15.

We can easily extend this proof in the case where there are more than 2 machines, by havingm+1 tasks
of length 1 inI1; andm tasks of length1 + α in I2. ut

6 Conclusion

We showed that, in the strong model of execution, the list algorithm SPT, which has an approximation ratio
of 2 − 1/m is the best truthful deterministic algorithm, and that there is no truthful randomized algorithm
which has an approximation ratio smaller than3/2−1/(2m). On the contrary, if we relax the constraints on
the execution model, i.e. if the result of a task which bidb is given to this task onlyb time units after its start,
then we can obtain better results. In this model of execution, there is a truthful4/3 − 1/(3m)-approximate
deterministic algorithm and a truthful optimal randomizedalgorithm. For both execution models, we also
gave lower bounds on the approximation ratios that a truthful coordination mechanism can have.

As a future work, it would be interesting to improve the results for which a gap between the lower and the
upper bound exists. For example, we believe that the lower bound 1+

√
17

4
(lower bound on the performance

of a truthful deterministic coordination mechanism for theweak model of execution) can be improved to
3/2 for two machines.

Another direction would be to restrict the study to truthfulalgorithms (or coordination mechanisms)
which run in polynomial time. Giving improved lower bounds which rely on a computational complexity
argument would be very interesting.
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A Appendix

• Results of Section 3 for related machines

Theorem A.1 Let us consider that we have a fixed numberm of machinesP1, . . . , Pm, such that machinePi has
a speedvi, v1 = 1, andv1 ≤ . . . ≤ vm. There is no truthful deterministic algorithm with an approximation ratio
smaller than2 − vm

∑

m

i=1
vi

.

Proof. Let us suppose that we haven tasks of length 1, and thatn >>
∑m

i=1 vi. Let us suppose that we have a truthful
algorithmA which has an approximation ratio equal toρ (we will then show thatρ has to be larger than or equal to
2 − vm

∑

m

i=1
vi

). Let t be the task which has the maximum completion time,Ct, in the schedule returned byA. We

know thatCt ≥ n
∑

m

i=1
vi

. Indeed, if it is possible to assignn vj
∑

m

i=1
vi

tasks to each machinePj , with j ∈ {1, . . . , m},

then every machines will end at time n
∑

m

i=1
vi

. If, for somej ∈ {1, . . . , m}, it is not possible to assign n vj
∑

m

i=1
vi

tasks

to each machinePj (i.e. n vj
∑

m

i=1
vi

is not an integer number), then there is a machinePj on which there are more than
n vj

∑

m

i=1
vi

tasks, and then on which the last task is completed aftern∑

m

i=1
vi

time units.

Let us now suppose that taskt bidsl′t = (n−1) vm
∑

m−1

i=1
vi

instead of 1. LetOPT be the makespan of an optimal solution

where there aren − 1 tasks of length 1 and a task of lengthl′t. We have: (n−1)
∑

m−1

i=1
vi

≤ OPT < (n−1)
∑

m−1

i=1
vi

+ 1.

Indeed, (n−1)
∑

m−1

i=1
vi

is the date at which all the machines end at the same time, if this is possible: in this case the task

of lengthl′t is onPm and there are(n−1) vj
∑

m−1

i=1
vi

tasks of length 1 on machinePj (for everyj ∈ {1, . . . , m − 1}) . If it

is not possible that all the machines end at the same time, then we schedule (at most)d (n−1) vj
∑

m−1

i=1
vi

e tasks of length 1 on

machinePj (j ∈ {1, . . . , m − 1}): all the tasks are scheduled and the completion time on eachmachinePi is smaller

than (n−1)
∑

m−1

i=1
vi

+ 1
vi

≤ (n−1)
∑

m−1

i=1
vi

+ 1.

AlgorithmA is not truthful if the completion time oft which bidsl′t is smaller than n
∑

m

i=1
vi

, since the completion

time oft when it bids 1 is at least n
∑

m

i=1
vi

. LetSA be the schedule returned by algorithmA when it has(n−1) tasks of

length 1 and a task of lengthl′t. AlgorithmA is not truthful if at least one unit of the task of lengthl′t is completed before
n

∑

m

i=1
vi

time units inSA. Thus, if we wantA to be truthful, then less than one unit of the task of lengthl′t has to be

completed before n
∑

m

i=1
vi

time units inSA. In this case, the makespan ofSA is at least n
∑

m

i=1
vi

+ ( n−1
∑

m−1

i=1
vi

− 1
vm

),

where n−1
∑

m−1

i=1
vi

− 1
vm

is the smallest execution time to execute a task of lengthl′t − 1. Thus, ifA is truthful, the

makespan ofSA is at least n
∑

m

i=1
vi

+( n−1
∑

m−1

i=1
vi

− 1
vm

) ≥
(

∑

m−1

i=1
vi

n−1+
∑

m−1

i=1
vi

)(

n
∑

m

i=1
vi

+ n−1
∑

m−1

i=1
vi

− 1
vm

)

OPT , because

we have seen thatOPT ≤ (n−1)
∑

m−1

i=1
vi

+1. This last expression is equal to n−1

n−1+
∑

m−1

i=1
vi

+
(

n

n−1+
∑

m−1

i=1
vi

)

∑

m−1

i=1
vi

∑

m

i=1
vi

−
∑

m−1

i=1
vi

vm (n−1+
∑

m−1

i=1
vi

), and tend towards1 +

∑

m−1

i=1
vi

∑

m

i=1
vi

= 2 − vm
∑

m

i=1
vi

, whenn >>
∑m

i=1 vi.

Thus, ifρ < 2− vm
∑

m

i=1
vi

, there is an instance ofn tasks of length 1 in which one of the tasks of length 1 will have

incentive to bidl′t instead of its true value. Thus, there is no truthful deterministic algorithm with an approximation
ratio smaller than2 − vm

∑

m

i=1
vi

. ut

Theorem 3.1 is thus a corollary of this theorem when all the machines have the same speed.
We can adapt in the same way the proof of Theorem 3.2, to show the following Theorem for related machines:

Theorem A.2 Let us consider that we have a fixed numberm of machinesP1, . . . , Pm, such that machinePi has a
speedvi, v1 = 1, andv1 ≤ . . . ≤ vm. There is no truthful randomized algorithm with an approximation ratio smaller
than 3

2 − vm

2
∑

m

i=1
vi

.
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Proof. Let us consider an instanceI with n tasks of length1 (n >>
∑m

i=1 vi). Let O = n
∑

m

i=1
vi

. Let OPT be

the makespan of an optimal solution of this instance. We haveO − 1 < OPT ≤ O. In any schedule of these tasks,
there is at least one task, denoted byt, whose expected completion time is larger than or equal toO−1

2 . Indeed, in any
schedule, the number of tasks which are completed at time(O − 1)/2 is smaller than or equal to the total number of
tasks, otherwiseOPT > O − 1 would not be the makespan of an optimal solution.

Let us now consider the instanceI ′ with n − 1 tasks of length1 and one task of length(n−1)vm
∑

m−1

i=1
vi

. Let O′ =

n−1
∑

m−1

i=1
vi

. Let OPT ′ be the optimal makespan ofI ′. We haveO′ ≤ OPT ′ < O′ + 1. Indeed, if the large task

is on machinePm of speedvm, and at mostd (n−1)vj
∑

m−1

i=1
vi

e tasks of length1 are on machinePj of speedvj (for all

j ∈ {1, . . . , m−1}), then all the tasks are scheduled and the makespan is smaller than or equal tod n−1
∑

m−1

i=1
vi

e ≤ O′+1.

Moreover the minimum completion time of the large task is equal toO′.
Let us now consider that, inI, taskt bids (n−1)vm

∑

m−1

i=1
vi

instead of 1. Let us consider that we have an algorithmA

which has an approximation ratioρ. We will see that, ifρ < 3
2 − vm

∑

m

i=1
vi

, thent decreases its expected completion

time by lying, and thus thatA is not truthful.
The expected completion time oft which bids(n−1)vm

∑

m

i=1
vi

instead of1 is smaller than or equal to

ρ OPT ′ −
( (n − 1)vm

∑m−1
i=1 vi

− 1
)

/vj

wherePj is the machine on whicht is assigned byA. SinceOPT ′ < O′ + 1 andvj ≤ vm, this is smaller than:

ρ
( n − 1
∑m−1

i=1 vi

+ 1
)

− n − 1
∑m−1

i=1 vi

+
1

vm

.

If t does not lie, we have seen that its expected completion time is larger than or eqal to
(

n
∑

m

i=1
vi

− 1
)

/2. Then,

A is truthful if

ρ
( n − 1
∑m−1

i=1 vi

+ 1
)

− n − 1
∑m−1

i=1 vi

+
1

vm

<
( n
∑m

i=1 vi

− 1
)

/2

which is equivalent to

ρ <

∑m−1
i=1 vi

n − 1 +
∑m−1

i=1 vi

( n

2
∑m

i=1 vi

− 1

2
+

n − 1
∑m−1

i=1 vi

− 1

vm

)

.

Whenn tends towards the infinity, the right hand part of this inequality tends towards:

∑m−1
i=1 vi

2
∑m

i=1 vi

+ 1 =
1

2

(

∑m
i=1 vi − vm
∑m

i=1 vi

)

+ 1 =
3

2
− vm

∑m

i=1 vi

.

Thus, ifρ is smaller than32 − vm
∑

m

i=1
vi

, thenA is not truthful. ut

Theorem 3.2 is thus a corollary of this theorem when all the machines have the same speed.

• Results of Section 4.2

Proof of Theorem 4.3 :

Let us suppose that we have a truthful algorithmA with an approximation ratioρ < 7/6. Let I be the following
instance: one task of length 3 and3m − 2 tasks of length 2. Letσ be the schedule returned byA whenI is the input.
Since there are onlym machines available, at mostm tasks of length2 are completed before four time units, and thus
at least2m− 2 tasks with the same length have a completion time which is larger than or equal to4.

Let us now consider the following instanceI ′: two tasks of length3 and3m − 3 tasks of length2. The optimal
makespan is6. WhenI ′ is the input,A returns a scheduleσ′ whose makespan is (strictly) smaller than7. One can
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remark thatA must execute the two tasks of length3 on the same machine. Then, the task of length 3 which is
scheduled first ends strictly before4 time units inσ′.

SinceA is truthful, no task can bid a larger length and improve its completion time. In particular, among the tasks
of length 2 which are completed after4 time units inσ, none can unilaterally bid3 and be the task which ends strictly
before4 time units inσ′. We now show thatA cannot avoid this since its approximation ratio is strictlysmaller than
7/6.

Let ID be a set of3m − 1 distinct identification numbers (ids). For each subset{a, b} ⊂ ID, the instanceI ′a,b is
equal to the instanceI ′ in which the ids are as follows: the two tasks of length 3 get the idsa andb, while the3m− 3
tasks of length2 get an id inID − {a, b}. Let σ′

a,b be the schedule returned byA whenI ′a,b is the input.
ID must containm + 2 distinct ids denoted byi1, . . . , im+2 and such that:∀x ∈ {1, . . . , m +1}, the task with id

ix is scheduled before the one with idim+2 in σ′

ix,im+2
.

Now, we build an instanceIim+2
similar to I as follows: the task of length 3 get the idim+2 and the3m − 2

tasks of length2 get an id inID − {im+2}. Let σim+2
be the schedule returned byA whenIim+2

is the input. There
exists at least one task with idiy such thaty ∈ {1, . . . , m + 1} and its completion time inσim+2

is larger than or
equal to 4. Indeed, at mostm tasks of length2 can end strictly before 4 time units sincem machines are available. As
consequence, the task with idiy can bid3 instead of2 and improve its completion time.

As a consequence,A cannot be truthful and this shows that there is no truthful algorithm which has an approxi-
mation ratioρ < 7/6. ut
The following Theorem concerns the weak model of execution in the centralized setting.

Theorem A.3 Let us consider that we have two identical machines. No truthful deterministic algorithm can be better
than7/6-approximate if it does not take into account the identification number of tasks whose length is unique.

Proof. Let us suppose that we have a truthful and (7/6 − ε)-approximate algorithm. We consider an instanceI1 with
four tasks of length 2 (with identification numbersa, b, c andd) and one task of length3 − 5ε (with id e). In the
solution built by the algorithm, at least two tasks of length2 have a completion time larger than or equal to 4. We can
observe that if one of them bids3 − 4ε or 3− 3ε then it will necessarily be executed on the same machine as taske of
length3 − 5ε (this is due to the fact that the algorithm is (7/6 − ε)-approximate). Since the algorithm is truthful, the
task which lied must be executed after taske (otherwise, its completion decreased).

Consider the instanceI2 with four tasks of length 2 (with identification numbersa, b, c andd) and one task of
length3 − 4ε (with id e). In the solution built by the algorithm, at least two tasks of length 2 have a completion time
larger than or equal to 4. If one of them bids3− 3ε or 3− 5ε then it will necessarily be executed on the same machine
as taske of length3 − 4ε. Since the algorithm is truthful, the task which lied must beexecuted after taske.

Consider the instanceI3 with four tasks of length 2 (with identification numbersa, b, c andd) and one task of
length3 − 3ε (with id e). In the solution built by the algorithm, at least two tasks of length 2 have a completion time
larger than or equal to 4. If one of them bids3− 4ε or 3− 5ε then it will necessarily be executed on the same machine
as taske of length3 − 3ε. Since the algorithm is truthful, the task which lied must beexecuted after taske.

Let T1 (resp.T2, T3) be the set of tasks of length 2 whose completion time is equalor larger than or equal to 4 in
the solution returned by the algorithm whenI1 (resp.I2, I3) is the input. One can find a couple of sets in{T 1, T 2, T 3}
such that their intersection is non empty. W.l.o.g., we suppose that taskd is in T1 ∩ T3. Now consider the following
instances:

1. (2, a), (2, b), (2, c), (3 − 3ε, d), (3 − 5ε, e)

2. (2, a), (2, b), (2, c), (3 − 5ε, d), (3 − 3ε, e)

For the first instance, we observed that the algorithm executes the task of length3 − 5ε before the one of length
3 − 3ε. For the second instance, we observed the opposite. Though some tasks have a unique length, the algorithm
must take into account their identification number to be truthful and (7/6− ε)-approximate. ut
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