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Abstract

This paper deals with problems which fall into the domain elfish scheduling: a protocol is in
charge of building a schedule for a set of tasks without diydaowing their length. The protocol
gets these informations from agents who control the taske& aim of each agent is to minimize the
completion time of her task while the protocol tries to miethe maximal completion time. When
an agent reports the length of her task, she is aware of whatttters bid and also of the protocol’s
algorithm. Then, an agent can bid a false value in order torop¢ her individual objective function.
With erroneous information, even the most efficient aldgmitmay produce unreasonable solutions. An
algorithm is truthful if it prevents the selfish agents frgrimg about the length of their task. The central
question in this paper isHow efficient a truthful algorithm can beWe study the problem of scheduling
selfish tasks on parallel identical machines. This questambeen raised by Christodoulou et al [8] in
a distributed system, but it is also relevant in centrallptoolled systems. Without considering side
payments, our goal is to give a picture of the performanceutige condition of truthfulness.
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1 Introduction

The Internet is a complex distributed system involving maantonomous entitiesafent. Protocols orga-
nize this network, using the data held by these agents amdjtty maximize the social welfare. Agents
are often supposed to be trustworthy but this assumptiomrisalistic in some settings as they might try
to manipulate the protocol by reporting false informatinrorder to maximize their own profit. With false
information, even the most efficient protocol may lead teeasonable solutions if it is not designed to cope
with the selfish behavior of the single entities. Then, itatunal to ask the following questioilow efficient

a protocol can be if it guarantees that no agent has incerttMee?

In this paper, we deal with the problem of schedulingelfish tasks om: identical parallel machines.
We consider two distinct settings in which the aim is to mizenthemakespani.e. the maximum com-
pletion time. The first setting is centralized, while thea@®t one is distributed. Both problems share the
following characteristics. Each task is owned by an agefihe lengthl; of a task: is known to its owner
only. The agents, considered as players of a non-coopergdimne, want to minimize the completion time
of their tasks. The protocol builds the schedule with ruleevkn to all players and fixed in advance. In
particular, mixing the execution of two jobs (like roundsio) is not allowed. Before the execution begins,
the agents report a value representing the length of thekis tdVe assume that every agent behave rationally
and selfishly. Each one is aware of the situation the othees &ad tries to optimize her own objective
function. Thus an agent can report a value which is not equiét real length. Practically, an agent can
add “fake” data to artificially increase the length of hektdst decreases her completion time. This selfish
behavior can prevent the protocol to produce a reasonablelose to the social welfare) schedule. Without
considering side payments, which are often used with theo&intiting the agents to report their real value,
some algorithmic tools can simultaneously offer a guaeantethe quality of the schedule (its makespan is
not arbitrarily far from the optimum) and guarantee thatdbleition istruthful (no agent can lie and improve
her own completion time). For both centralized and distedusettings, our goal is to give lower and upper
bounds on the performance under the condition of truthBdnét is important to mention that we do not
strictly restrict the study to polynomial time algorithms.

Since the length of a task is private, each agent bids a vahighwepresents the length of her task. We
assume that an agent cannot shrink the length of her tasér(ae she will not get her result), but if she
can decrease her completion time by bidding a value largar tie real one, then she will do so. We also
assume that an agent does not report a distribution on efifféengths. A player may play according to a
distribution, but she just announces the outcome, so thtegabdoes not know if she lies.

In the centralized settingthe strategy of ageritis a valueb; representing the length of her task. The
protocol, called an algorithm, is in charge of indicatingamtand on which machine a task will be scheduled.
An algorithm istruthful when no agent has incentive to report a false value. We foaubeperformance
of truthful algorithms with respect to the makespan of theeslule. In particular, we are interested in giving
lower and upper bounds on tA@proximation raticthat a (deterministic or randomized) truthful algorithm
can achieve. For example, a truthful algorithm can be obthby greedily scheduling the tasks following the
increasing order of their lengths. This algorithm, knowrs&3, produces & — 1/m)-approximate sched-
ule [11]. Are there truthful algorithms with better approximationagantee for the considered scheduling
problem?

In thedistributed settingthe strategy of agerts a coupleM;, b;), where); is the machine which will
execute the task ang is the length bidden. As opposed to the centralized settirgagents choose their
machine and\/; can be a probability distribution on different machinese Ppnotocol, called aoordination

We equally refer to a task and its owner since we assume thetasks cannot be held by the same agent.



mechanismn this context [8], consists in selectingsaheduling policyfor each machine (e.g. scheduling
the tasks in order of decreasing lengths). An important atdral condition is due to the decentralized
nature of the problem: the scheduling on a machine shouldrdkepnly on the tasks assigned to it, and
should be independent of the tasks assigned to the otherimeachA coordination mechanism tisithful
when no agent has incentive to lie on the length of her taskndtheprice of anarchy[14], we study the
performance of truthful coordination mechanisms with eesfo the makespan. The price of anarchy of a
coordination mechanism is, in the context, equal to theektrgatio between the makespan of a schedule
where agent’s strategies forriNash equilibrium and the optimal makespan.

Interestingly, it is possible to slightly transform the S&lgorithm in a truthful coordination mechanism,
as suggested in [8]: each machiRgschedules its tasks in order of increasing lengths, and adtie very
beginning of the schedule a small delay equdljte- 1)e times the length of the first task. By this way, and
if ¢ is small enough, the schedule obtained in a Nash equilibiusimilar to the one returned by the SPT
algorithm (excepted the small delays at the beginning osttteedule). Whea is negligible, the price of
anarchy of this coordination mechanisn2is 1/m. Are there truthful coordination mechanisms with better
price of anarchy for the considered scheduling problem?

For both centralized algorithms and coordination mechmasjsve consider the two following execution
models:

e Strong model of execution: If the owner of task bidsb; > [;, then the execution time will still bg
(i.e. the task will be completeld time units after its start).

e Weak model of execution: If the owner of task bidsb; > [;, then the execution time will bk (i.e.
the task will be completed; time units after its start).

The strong execution model corresponds to the case wheke lhase to be linearly executed — from
their beginning to their end—, whereas the weak executiodeintorresponds to the case where a task can
be executed in any ordefand the “fake” part of the task is not anymore necessarigceted at the end),
or when the machine returns the result of the task only at tlikad its execution. Depending on the
applications of the scheduling problem, either the stranip@ weak model of execution will be used.

Related wor k

The field ofMechanism Desigoan be useful to deal with the selfishness of the agents. ftsigea is to
pay the agents to convince them to perform strategies thatthe system to optimize a global objective
function. The most famous technique for designing trutmiglchanisms is perhaps the Vickrey-Clarke-
Groves (VCG) mechanism [20, 7, 12]. However, when appliezbtobinatorial optimization problems, this
mechanism guarantees the truthfulness under the hypsthesithe objective function idilitarian (i.e. the
value of the objective function is equal to the sum of the &égerdividual objective functions) and that the
mechanism is able to compute the optimum. Archer and Tardozdiuce in [4] a method which allows to
design truthful mechanisms for several combinatorialrofation problems to which the VCG mechanism
does not apply. However, both approaches cannot be appligd tproblem.

Scheduling selfish agents has been intensively studied thssyears, started with the seminal work of
Nisan and Ronen [17], and followed by a series of papers [4, 8, 9, 15, 16]. However, all these works
differ from ours since in their case, the selfish agents arenhichines while here we consider that the agents

ZSijtuation in which no agent can unilaterally change heteatraand improve her own completion time. A Nash equilibrium
is pureif each agent has a pure strategy : each agent chooses ontgamigne. A Nash equilibrium isiixedif the agents give a
probability distribution on the machines on which they wgidl.

3Nevertheless, the execution of two jobs is never interlaced



are the tasks. Furthermore, they use side payments wheefiscus on truthful algorithms without side
payments.

A more closely related work is the one of Christodoulou et8aMho considered the same model but
only in the distributed context of coordination mechanismbey proposed different coordination mecha-
nisms with a price of anarchy better than the one of the SPTdamation mechanism. Nevertheless, these
mechanisms are not truthful. In [13], the authors gave doatibn mechanisms for the same model for
related machines (i.e. machines can have different speadsheir mechanisms are also not truthful.

In [3], the authors gave a truthful randomized algorithmtfer strong model of execution defined before,
and they gave, for the weak model of execution, a coordinatiechanism which is truthful if there are two
machines and if the lengths of the tasks are powers of a cexbaistant. An optimal (but exponential time)
truthful randomized algorithm and a truthful randomizedABTor the weak model of execution appear in
[18, 19]. The technique consists in computing an optimagrex(1 + ¢)-approximate) schedule and each
machine executes its tasks in a random order (the trutlgslitedue to the introduction of fictitious tasks
which guarantee that all the machines have the same load).

Another related work is the one of Auletta et al. who congdén [5] the problem of scheduling selfish
tasks in a centralized case. Their work differs from ourgssithey considered that each machine uses a
round and robin policy and thus that the completion of eask imthe completion time of the machine on
which the task is (this model is known as the KP model). Thaysitered that the tasks can lie in both
directions, and that there are some payments.

Contribution and organization of the article

Sections 3 and 4 are devoted to the centralized setting.riicylar, we study the strong (resp. weak) model
of execution in Section 3 (resp. Section 4). Results on thkibuted setting are presented in Section 5 for
both execution models.

Table 1 and Table 2 give a summary of the bounds that we areeaféthose with & are presented in
this article). LB stands for “Lower bound”, UB for “Upper biod” and NE for “Nash equilibria”.

Deterministic Randomized
LB uB LB uB
centr.aliz.ed setting 12 — = 2 — % [8] é — % Pl2-2=5G+ : =) [3]
dlstrlputed - = (pgre NEY |2—[8]|5—551 2—
setting % — > (mixed NE)}

Table 1: Bounds forn identical machines for the strong model of execution.

Deterministic Randomized
LB UB LB UB
centralized setting m = 2:1+¥1%=9 > 114 | 4 — L 1[18, 19] 1[18, 19]
m>3:1>1. 16 t
distributed LVIT 5 198 (pure NE)f | 2— L [14+¥B=3 51154 21
setting (pure NE)

Table 2: Bounds forn identical machines for the weak model of execution.



2 Notations

We are givennm machines (or processor$y, ..., P}, andn tasks{1,...,n}. Letl; denote the real
execution time (or length) of tagk We use the identification numbers to compare tasks of the ghiciden)
lengths: we will say that task which bidsb;, is larger than task, which bidsb;, if and only if b; > b; or
(b; = bj andi > 7). Itis important to mention that an agent cannot lie on haicue) identification number.

A randomized algorithm can be seen as a probability didtahwover deterministic algorithms. We say
that a (randomized) algorithm is truthful if for every tasietexpected completion time when she declares
her true length is smaller than or equal to her expected cetiopltime in the case where she declares a
larger value. More formally, we say that an algorithnmrighful if E;[l;] < E;[b;], for everyi andb; > [;,
whereF;[b;] is the expected completion time of tagkif she declare$;. In order to evaluate the quality of
a randomized algorithm, we use the notion of expected appedion ratio.

We will refer in the sequel to the list scheduling algorithb#8T and SPT, where LPT (resp. SPT) [11]
is the algorithm which greedily schedules the tasks, soni@dder of decreasing (resp. increasing) lengths:
this algorithm schedules, as soon as a machine is availfigidargest (resp. smallest) task which has not
yet been scheduled. An LPT (resp. SPT) schedule is a schexluteed by the LPT (resp. SPT) algorithm.

3 About truthful algorithmsfor the strong model of execution

3.1 Deterministic algorithms

We saw that the deterministic algorithm SPT, whicli2s- %)-approximate, is truthful. Let us now show
that there is no truthful deterministic algorithm with ateetapproximation ratio.

Theorem 3.1 Let us consider that we have identical machines. There is no truthful deterministicalg
rithm with an approximation ratio smaller thath— %

Proof. Let us suppose that we hawe= m (m — 1) + 1 tasks of length 1. Let us suppose that we have
a truthful deterministic algorithrd which has an approximation ratio smaller th@n— 1/m) Lett be the
task which has the maximum completion tindg, in the schedule returned by. We know thaiC; > m.

Let us now suppose that taslbids m instead of 1. We will show that the completion timetdé then
smaller thanm. Let OPT be the makespan of an optimal solution where therenarel = m (m — 1)
tasks of length 1 and a task of lengih We have:OPT = m. Since te approximation ratio of algorithm
A is smaller than(2 — 1/m), the makespan of the schedule it builds with this instancamialler than
(2 —1/m)m = 2m — 1. Thus, the task of length: starts before tim¢m — 1). Thus, if taskt bidsm
instead ofl, it will start before timen — 1 and be completed one time unit after, that is before tim&hus
taskt will decrease its completion time by biddimg instead of 1, and algorithid is not truthful. O

Note that we can generalize this result in the case of retatshines : we have: machinesP,, . .., B,
such that machin®; has a speed;, v = 1, andv; < ... < v,,. By this way, we obtain that there does not
exist truthful deterministic algorithms with an approxitoa ratio smaller thar2 — ZE;“ o (the proofisin
the Appendix). o

Concerning the strong model of execution, no determinatjorithm can outperform SPT in the cen-
tralized setting. Then, it is interesting to consider randmd algorithms to achieve a better approximation
ratio.




3.2 Randomized algorithms

In [3], the authors present a randomized algorithm whictstg in returning a LPT schedule with a proba-
bility 1/(m+ 1) and a slightly modified SPT schedule with a probabitity(m + 1). They obtain a truthful
algorithm whose expected approximation ratigs; (5 — 5= ) + 727 (2 — =) = 2 — 25 (3 + 5-). This
ratio is an upper bound which improves- % but no instance showing the tightness of their analysis is
provided. A good candidate should be simultaneously a tghimple for both LPT and SPT schedules.
We are not aware of the existence of such an instance and wedai a future improvement of this upper

bound. The following Theorem provides a lower bound.

Theorem 3.2 Let us consider that we hawe identical machines. There is no truthful randomized algori
with an approximation ratio smaller tha# — .

Proof. Lete > 0, and let us suppose that we have a truthful algorithrwhose expected approximation
ratiois(3/2 — 1/(2m) — e).

Let us consider that we hawen (m — 1) + m tasks of length 1, where is a positive integer such that
x> 1/(2em)—1/(2e m?)—1/m. Sincem machines are available, the optimal makespan(ia — 1)+ 1.
With any randomized algorithm (including), there is a task whose expected completion time is at least
(x (m —1))/2 4+ 1. Since algorithmA is truthful, ¢ should not improve its completion time by bidding
xm + 1 instead of 1. Suppose thatnilaterally lies and bids:m + 1 instead of 1. For algorithmd,
there is there m (m — 1) + m — 1 tasks of length 1 and a task of lengthn + 1. The optimal makespan
is thenzm + 1 and the expected makespan of the schedule returned lsysmaller than or equal to
(3/2 —1/(2m) — ¢)(xm + 1). As a consequence, the expected completion time of the fangth
xm+ 1 is also bounded above l§8/2 — 1/(2m) —¢)(x m+ 1). Sincet increased its length with m time
units, its real expected completion time is smaller thargoiaéto(3/2—1/(2m) —e)(x m+1) —z m. With
x> 1/(2em) —1/(2em?) —1/m, the expected completion time ois strictly smaller tham: (m —1)/2+1
when it bidszm + 1 and larger than or equal t@:(m — 1) + 2)/2 when it bids its true length 1. This
contradicts the fact thad is truthful. O

Note that we can generalize this result in the case of retatshines : we have: machinesP,, . .., B,
such that machiné’; has a speed;, v; = 1, andv; < ... < v,,. By this way, we obtain that there does
not exist truthful algorithms with an approximation ratimaller than% — 225)7"0 (the proof is in the

Appendix). =

4 About truthful algorithmsfor the weak model of execution

4.1 A truthful deterministic algorithm

We saw in the Section 3 that SPT is a truthful &2d- 1/m)-approximate algorithm for the strong model of
execution, and that no truthful deterministic algorithnm bave a better approximation ratio. If we consider
the weak model of execution, we can design a truthful detgsti¢ algorithm with a better performance

guarantee (see Table 3).

Theorem 4.1 LPT,;,,0r is @ deterministic, truthful and: — ;L-)-approximate algorithm.

Proof. We are givem tasks with true lengths, . .., [,. Let us suppose than each task has bidden a value,
and that task bidsb; > [;. This can make the taskstart earlier ino;, pr but never later. In addition, the
optimal makespan whenbids b; > [; is necessarily larger than or or equal to the optimal makesgeen
taski: reports its true length. Lef; be the date at which taslstarts to be executed iy, pr. The completion

5



‘ LPTmirror
Input: m identical machines andtasks{1,...,n} which bid length9y, ..., b,

Make a schedule, pr with the LPT list algorithm.
Let COPT pe the optimal makespan.

Let p(i) be the machine on which the tasls executed i pr.
Let C; be date at which the taglends ino; pr.

Output:  The schedule in which taskis executed on maching)
and starts at timé4/3 — 1/(3m))COET — ;.

max

Table 3: A truthful deterministic algorithm for the weak neb@f execution

time of taski in LPT,irror 1S (4/3 — 1/(3m))OPT — C; +b; = (4/3 —1/(3m))OPT — S; because
S; = C; — b;. By biddingb; > [;, taski can only increase its completion time in the schedule retiityy
LPT,,i-or becausé PT does not decrease aistl does not increase. Thus taskoes not have incentive
to lie.

Since the approximation ratio of the schedule obtained #¢hLPT list algorithm is at mosd/3 —
1/(3m)) [11], the schedule returned WyPT,,;.. is Clearly feasible and its makespan is, by construction,
(4/3 — 1/(3m))-approximate. Thu& PT,,;..., is a truthful and(3 — ;- )-approximate algorithm. O

3m

Note that L P10 IS NOt @ polynomial time algorithm, since we need to know thtue of the
makespan in an optimal solution, which is an NP-hard prol#dj. However, it is possible to have a
polynomial time algorithm which i$4/3 — 1/(3m))-approximate, even if some tasks do not bid their true
values. Consider the following simple algorithm: we firstrqute a schedule;, pr with the LPT algorithm.
Let p(¢) be the machine on which the tasks executed i pr, let C; be the completion time of taskin
orLpr, and letC,,.. be the makespan af; p. We then compute the final schedutein which task: is
scheduled omp(i) and starts at timé€’,,,,. — C;.

We can show that this algorithm {@/3 — 1/(3m))-approximate (i.e. the schedule returned by this
algorithm is at mos{4/3 — 1/(3m)) times larger than the optimal schedule in which all the tdsikis
their true values). We can show this by the following way. Wemose that all the tasks excephave
bidden some values. Let;pr(b;) be the schedulepr obtained when bids b;, let S;(b;) be the date
at which taski starts to be executed , pr(b;), and letC,... (orpr(b;)) be the makespan of, pr(b;).
The completion time of task (which bidsd;) in ¢’ is equal toC,,4. (orp7(b;)) — S;(b;). Since with
the LPT algorithm, tasks are scheduled in decreasing oridingths, ifb; > [; then S;(b;) < Si(Li).
Thus, whatever the values bidden by the other tasks:anas incentive to lie and bié; > I; only if
Crnaz(opr(bi)) < Cax(orpr(l;)). Since this is true for each task, no task will unilateraiyunless this
decreases the makespan of the schedule. The makespan oh#uiles’ in which all the tasks bid their
true values ig4/3 — 1/(3m))-approximate, and then the solution returned by this algariwill also be
(4/3 — 1/(3m))-approximate.

4.2 Deterministic algorithms: lower bounds

Theorem 4.2 Let us consider that we have two identical machines. Theme tsuthful deterministic algo-
rithm with an approximation ratio smaller thah+ (/105 — 9)/12 ~ 1.1039.



Proof. For the sake of simplicity, we first prove this theorem witratia1.1. At the end of the proof, we
simply replace some numerical values to get the bauad /105 — 9)/12.

Let us suppose that we have a truthful algoritttrwith an approximation rati@p < 1.1. Let I be
the following instance: one task of length 5, one task of lefgand three tasks of length 3. The optimal
makespan is 9. Whehis the input,A returns a schedule whose makespan is (strictly) smaller thaf.
SinceA is a deterministic algorithm, it must execute the threegagkength3 on the same machine. Then,
two of them have a completion time larger than or equal to 6./Lbe the following instance: two tasks of
length 5, one task of length 4 and two tasks of length 3. Thiengptmakespan i$0. WhenI’ is the input,

A returns a schedule’ whose makespan is (strictly) smaller thein SinceA is a deterministic algorithm,
it must execute the two tasks of lengilon the same machine. Then, one task of length 5 ends strictly
before 6 time units (the first to be scheduled).

Since A is truthful, no task can bid a larger length and improve itsptetion time. Then, among the
two tasks of length 3 which are completed after 6 time units,inone can bid and be the task which ends
strictly before 6 time units im’. We now show thatd cannot avoid this since its approximation ratio is
strictly smaller thar..1.

LetID = {a,b,c,d} be a set ofl distinct identification numbersd stands foidentification numbein
the sequel). For each € 1D, we definel, as an instance similar tband for which the ids are assigned
as follows: the task of length 5 gets theadand the3 tasks of lengtt8 get an id in/D — {z} (the task
of length 4 is always given id ¢ ID). Leto, be the schedule returned by when I, is the input. Let
S ={I;|x € ID}. We havelS| = 4.

For each couplgz,y} C ID, we definel;, , as an instance similar t§ and for which the ids are
assigned as follows: the two tasks of length 5 get thecidady, while the two tasks of lengtB get their
ids fromID — {x,y} (the task of length 4 is still given id). Let o—x,y be the schedule returned byywhen
I, is the input. Lets’ = {I; , | {=,y} C ID}. We havelS’| = 6.

Letf: S — Sbea functlon such that(I; ) = I, if the task with idz is scheduled after the one
withid y in o7, , otherwisef (I}, ) = I,. Since[S’| > |S], there exists a couple of instances3hwhich
both have the same image ﬂwby f. Wlthout loss of generality, we suppose that these instaacel! ,
andl, .. Moreover, we suppose th#it/; ;) = f(I,.) = I.. Sincel, contains three tasks of length 3 (W|th
ids b, ¢ andd) which are scheduled on the same machine,ntwo of them have a completion time larger
than or equal t@. This set of two tasks must have a nonempty intersection ¥ith}. Without loss of
generality, we suppose that taskvith length 3 has a completion time larger than or equal to &,inDue
to the definition off, b can bid5 instead of3 and be executed beforein a;’b. As previously observed,
will then end strictly before 6 time units. As a consequenéeannot be a truthful ang-approximate with
p < 1.1

Using the same technique with slightly modified instancescan get an improved lower bound. Indeed
A cannot be a truthful ang-approximate withp < 1 + (v/105 — 9)/12 ~ 1.1039. Instancel contains
three tasks of length 2, one task of length- 2e and one task of lengtB + ¢. Instancel’ contains two
tasks of length 2, one task of lengti- 2¢ and two tasks of lengtB + . The bound is obtained when

e = (v/105 — 9)/4. 0

The following Theorem is an extension of Theorem 4.2 whereentioan two machines are available.
The proof is in the Appendix because the proving techniqesamdar.

Theorem 4.3 Let us consider that we have > 3 identical machines. There is no truthful deterministic
algorithm with an approximation ratio smaller tham6.



We supposed in Theorems 4.2 and 4.3 that the solution dementize length and the identification
number of each task (even those which can be identified wéh tmique length). This assumption is,
in a sense, “stronger” than the usual one since we supposéhthaolution returned by an algorithm for
two similar instances (same number of tasks, same lengthditferent identification numbers) can be
completely different. If we relax this assumption, i.e. dentification numbers are only required for the
tasks which have the same length, the bound presented indrhef2 can be improved to/6 (see the
proof in the Appendix).

5 About truthful coordination mechanisms

Letp > 1. If there is no truthful deterministic algorithm which hasapproximation ratio op, then there is
no truthful deterministic coordination mechanism whicla}s induce pure Nash equilibria and which has
a price of anarchy smaller than or equalptoindeed, if this was not the case, then the deterministio-alg
rithm which consists in building the schedule obtained iveegNash equilibrium with thig-approximate
coordination mechanism would bepeapproximate truthful deterministic algorithm.

Likewise, if there is no truthful (randomized) algorithm et has an approximation ratio of then
there is no truthful coordination mechanism which has agpoicanarchy smaller than or equaldolndeed,
if this was not the case, the algorithm which consists inding the schedule obtained in a Nash equilibrium
with this p-approximate coordination mechanism would heapproximate truthful algorithm.

This observation leads us to the following results for thiergj model of execution. We deduce from
Theorem 3.1 that there is no truthful deterministic coaation mechanism which always induce pure Nash
equilibria and which has a price of anarchy smaller than 1/m. Thus there is no truthful coordination
mechanism which performs better than the truthful SPT doatibn mechanism, whose price of anarchy
tends toward® — 1/m. We deduce from Theorem 3.2 that there is no truthful coatthn mechanism
which has a price of anarchy smaller t@n- ﬁ We now consider the weak model of execution.

Theorem 5.1 If we consider the weak model of execution, there is no mutigterministic coordination
mechanism which induces pure Nash equilibria, and whichahpgce of anarchy smaller tha|3|+4—‘/ﬁ R
1.28.

Proof. Let us first prove this result in the case where there are twchimes,P;, andP,. Lete > 0. Let
us suppose that there exists a truthful coordination mesimen with a price of anarchy o%\/ﬁ — €.
Let us consider the following instande: three tasks of length 1. Singet is a deterministic coordination
mechanism which induces pure Nash equilibria, there isest le task in/; which has a completion time
larger than or equal t®. Lett be such a task.

Let us first consider this instande: we have two tasks of Iengﬂfﬂg—\/ﬁ ~ 1.56. SinceM is (1+T\/ﬁ —
)-approximate, there is one task on each machine, and edclistasmpleted before tim ‘“‘2‘/ﬁ X
1+‘ﬁ = 2. Thus, when it has a task of Iengﬂf}i each machine must end it before tithe

Let us now consider the following instanég two tasks of length 1, and a task of Iengﬂq2—. Since
Mis (1+‘ﬁ ¢)-approximate, the task of Iengthlg—‘/ﬁ is necessarily alone on its machine (without loss
of generality, onP;). As we have seen it?, must schedule this task before tirdeThus, task of instance
I, has incentive to biel’lg—‘/ﬁ instead of 1. by this way it will end before time 2, instead dinae larger
than or equal to 2.

We can easily extend this proof in the case where there are than 2 machines, by havimg + 1 tasks of
length 1 inl;; m tasks of Iength‘“‘zi\/ﬁ in I,; andm tasks of lengthl and a task of Iength‘”z—\/ﬁ in Is.
O



Theorem 5.2 If we consider the weak model of execution, there is no wbitdordination mechanism
which induces pure Nash equilibria, and which has a pricerafrahy smaller thai + @ ~ 1.15.

Proof. Let us first prove this result in the case where there are twchines, P, and . Lete > 0.
Let us suppose that there exists a truthful coordinationhax@iemAM with a price of anarchy op < ”Ta
(with o < 1). Let us consider the following instandg: three tasks of length 1. Singet is a coordination
mechanism which induces pure Nash equilibria, there isest le task in/; which has a completion time
larger than or equal td.5 (because there is a machine where there is at least 2 tasks). be such a
task. Let us suppose thabids1 + o (with o < 1). Sincep < ”Ta then taskt is alone on its machine
(without loss of generality, oi;), otherwise the makespan of the schedule would be greaampttimes
the makespan of an optimal schedule which is 2. Sifi¢es truthful, the expected completion time ©f
when it bids1 + « should be larger than or equal 1t (otherwiset would have incentive to lie). Thus,
when machineP; has a task of length + «, the expected completion time of this task is at |daSt Let
us consider the instande where we have two tasks of lengtht- a. Sincep < ”Ta < 2, there is one task
on each machine. Since, when there is one task of lehgtlny on machineP;, the expected completion
time of this task is larger than or equal to 1.5, and since giemal makespan of a schedule of these tasks

is 1 + «, then, the price of anarchy @¥ should be larger than or equalf@%. By settinngfTa =13 we

T+a’
obtaina = ¥13=3 and thugp > 1+ ¥13=3 > 1.15,
We can easily extend this proof in the case where there are than 2 machines, by havimg+ 1 tasks
of length 1 inl; andm tasks of lengti + « in Is. O

6 Conclusion

We showed that, in the strong model of execution, the listratlyn SPT, which has an approximation ratio
of 2 — 1/m is the best truthful deterministic algorithm, and that éhier no truthful randomized algorithm
which has an approximation ratio smaller tt&gi2 — 1 /(2 m). On the contrary, if we relax the constraints on
the execution model, i.e. if the result of a task whichbis given to this task only time units after its start,
then we can obtain better results. In this model of executlwere is a truthfull /3 — 1/(3 m)-approximate
deterministic algorithm and a truthful optimal randomizddorithm. For both execution models, we also
gave lower bounds on the approximation ratios that a truttdardination mechanism can have.

As a future work, it would be interesting to improve the résédr which a gap between the lower and the
upper bound exists. For example, we believe that the Iovxlencti>é+4—ﬁ7 (lower bound on the performance
of a truthful deterministic coordination mechanism for thieak model of execution) can be improved to
3/2 for two machines.

Another direction would be to restrict the study to truthéddjorithms (or coordination mechanisms)
which run in polynomial time. Giving improved lower boundsieh rely on a computational complexity
argument would be very interesting.
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A Appendix
o Results of Section 3 for related machines

Theorem A.1 Let us consider that we have a fixed numbeof machinesP,, ..., P,,, such that machiné&; has
a speedv;, v; = 1, andwv; < ... < v,,. There is no truthful deterministic algorithm with an apprmation ratio
smaller tham — =

s
i=1 "

Proof. Letus suppose that we haneasks of length 1, and that>> >""" | v;. Let us suppose that we have a truthful

algorithm.4 which has an approximation ratio equalggwe will then show thap has to be larger than or equal to

2 — %) Let ¢ be the task which has the maximum completion tiffig, in the schedule returned by. We
i=1 "

know thatC, > Indeed, if it is possible to assiga<—i— tasks to each machi with j € {1,. ,
t = Z— p gfﬁ r1@/ J { }

Vi
n'UJ

tasks

i

then every machines will end at tm'f—u If, for somej € {1,...,m}, itis not possible to assig
i=1

is not an integer number), then there is a mactitmen which there are more than

nvj

to each machiné; (i.e.

nvj

V4
111

tasks, and then on which the last task is completed — time units.

i=1 "

111

Let us now suppose that tasbidsl;, = n=1om jnstead of 1. LeOPT be the makespan of an optimal solution

V4
i=1 "

where there are — 1 tasks of length 1 and a task of length We have: % < OPT < (’fn%ll) + 1.
i—1 Vi i=1 Ui

("—1) s the date at which all the machines end at the same timeisifgtpossible: in this case the task

of lengthl; is on P,,, and there ar% tasks of length 1 on machin®; (for everyj € {1,...,m — 1}). Ifit
i—1 Ui

Indeed

is not possible that all the machines end at the same time wkeschedule (at mosi)zm;)fﬂ} tasks of length 1 on

machineP; (j € {1,.. — 1}): all the tasks are scheduled and the completion time onmachineP; is smaller
than =1 1) + 1< (7n 11) +1.

. vy —
i (3

Algorlthm A is not truthful if the completion time afwhich bidsl; is smaller tharT since the completion
time oft when it bids 1 is at Iea’sﬁ Let S 4 be the schedule returned by algoritbhwhen it hagn — 1) tasks of

Iength 1 and atask of length Algorithm A is not truthful if at least one unit of the task of lengftis completed before
27 time units inS4. Thus, if we want4 to be truthful, then less than one unit of the task of lerigtias to be

Vi

corﬁpleted befor? time units inS4. In this case, the makespan$f is at least—<+— + ( n_l i),

m—1
v; . Um
1 i=1 " Z Vi

Wherenil

Vi

i=1

m—1
H tn n=1 _ 1\> Zl, ¢ n n—1 _ 1
makespan of 4 is at leas " + (er: - =) > (n 1+Zm . )( e + s L) OPT, because

we have seen th@?PT < <%= 1 1. This last expression is equal"‘ ol ( &1 )727171_
711 1+ v; n71+zi:1 v; Vi

i=1 i=1

m— m—1
vm(nZ:T) and tend towards + ’7:1 =2- Zﬂ{j - ,whenn >> 37" ;.

Thus, ifp < 2 — —m=—, thereis an mstance aftasks of length 1 in which one of the tasks of length 1 will have

m—1

incentive to bidl; mstead of its true value. Thus, there is no truthful deteistic algorithm with an approximation
ratio smaller tha@ — O

s
i=1 "

Theorem 3.1 is thus a corollary of this theorem when all thehirees have the same speed.
We can adapt in the same way the proof of Theorem 3.2, to shefoltlowing Theorem for related machines:

Theorem A.2 Let us consider that we have a fixed numbeof machines,, . . ., P,,, such that machin®; has a

speety;, v1 = 1,andv; < ... < v,,. Thereis no truthful randomized algorithm with an approatian ratio smaller
3 U,

thans ~ Tyt

11



Proof. Let us consider an instandewith n tasks of lengthl (n >> > v;). LetO = s LetOPT be

the makespan of an optimal solution of this instance. We ldavel < OPT < O. In any schedule of these tasks,
there is at least one task, denotedbywhose expected completion time is larger than or equéilzitb. Indeed, in any
schedule, the number of tasks which are completed at(tne 1)/2 is smaller than or equal to the total number of
tasks, otherwis® PT' > O — 1 would not be the makespan of an optimal solution.

Let us now consider the instané¢éwith n — 1 tasks of lengthl and one task of lengthZ- Dvm et O =

U'
i=1

Z’};ll -. Let OPT’ be the optimal makespan éf. We haveO’ < OPT" < O' + 1. Indeed, if the large task

is on machineP,, of speedv,,, and at mosf{

(n 1)%

Vi

| tasks of lengthL are on machine?; of speedu» (for all

Z ] <O'+1.
Moreover the minimum completion time of the large task is@dqoO’.
Let us now consider that, if, task¢ bids 2=~ instead of 1. Let us consider that we have an algorithm

Vi

which has an approximation ratip We will see that, ifo < 5 — ﬁ thent decreases its expected completion
i=1 "

j€{l1,...,m—1}),thenall the tasks are scheduled and the makespan is sthalheor equal td

time by lying, and thus thatl is not truthful.
The expected completion time ofvhich bids &2 instead ofl is smaller than or equalto

s
i=1 "'

pOPT/—(( 2 —1)/v;

=1 (%

whereP; is the machine on whichis assigned byd. SinceOPT’ < O’ 4+ 1 andv; < v,,, this is smaller than:

p( n—1 n 1) n—1 n 1
m—1 - m—1 o
dim Vi dlie1 Vi Um

If ¢t does not lie, we have seen that its expected completion sr@eder than or eqal t% - 1)/2. Then,
i=1 "

A is truthful if
n—1 n—1 1 n
+1) +

— ) - — < (= — 1)/2
Zj:ll U Zni_ll v;  Um (Zizl Ui )/

p(
which is equivalent to
St n 1 n-1 1

m -—-+ — .
TL—l—FZl 1 ’01(221':1111' 2 Zzillvi Um
Whenn tends towards the infinity, the right hand part of this indigu#ends towards:

p <

m—1 m
i— 7 1 — 1 Um 3 m
2y vy L Zgtimtey g 3 _tm
23 g Vi 2 D i1 Vi 2 >l
Thus, ifp is smallerthar% Z -, then A is not truthful. O

Theorem 3.2 is thus a corollary of this theorem when all thehires have the same speed.

e Results of Section 4.2

Proof of Theorem 4.3 :

Let us suppose that we have a truthful algoritdmvith an approximation ratip < 7/6. Let I be the following
instance: one task of length 3 aBoh — 2 tasks of length 2. Let be the schedule returned bywhen! is the input.
Since there are only» machines available, at mast tasks of lengtl2 are completed before four time units, and thus
at leastm — 2 tasks with the same length have a completion time which gelahan or equal td.

Let us now consider the following instanée two tasks of lengtt3 and3m — 3 tasks of lengtl2. The optimal
makespan i$. WhenI’ is the input,A returns a schedule’ whose makespan is (strictly) smaller thanOne can

12



remark that4 must execute the two tasks of lendgiton the same machine. Then, the task of length 3 which is
scheduled first ends strictly befotdime units ino’.

SinceA is truthful, no task can bid a larger length and improve itsiptetion time. In particular, among the tasks
of length 2 which are completed aftétime units ino, none can unilaterally bifl and be the task which ends strictly
before4 time units ino’. We now show tha#d cannot avoid this since its approximation ratio is strictfyaller than
7/6.

Let /D be a set oBm — 1 distinct identification numbers (ids). For each sudseb} C 1D, the instancd,, , is
equal to the instancE in which the ids are as follows: the two tasks of length 3 getitlsa andb, while the3m 3
tasks of lengtl2 getan id in/ D — {a, b}. Leto, , be the schedule returned bywhenI’ » IS the input.

ID must containn + 2 distinct ids denoted b¥,...,im+2 and such that/z € {1,...,m+ 1}, the task with id
i, is scheduled before the one withiig 1 in o} P

Now, we build an instancé; ., similar to I as follows: the task of length 3 get thedg - and the3m — 2
tasks of lengtl2 getanid in/D — {i,,2}. Leto;,, . be the schedule returned bywhen’; ., is the input. There
exists at least one task with ig such thaty € {1,...,m + 1} and its completion time im;, ., is larger than or
equal to 4. Indeed, at most tasks of lengtt2 can end strictly before 4 time units sinegemachines are available. As
consequence, the task withziglcan bid3 instead o2 and improve its completion time.

As a consequence} cannot be truthful and this shows that there is no truthfgbathm which has an approxi-
mation ratiop < 7/6. O
The following Theorem concerns the weak model of executicdhé centralized setting.

Theorem A.3 Let us consider that we have two identical machines. Nofulitteterministic algorithm can be better
than7/6-approximate if it does not take into account the identifmanumber of tasks whose length is unique.

Proof. Let us suppose that we have a truthful aids(— €)-approximate algorithm. We consider an instaficevith

four tasks of length 2 (with identification numbersb, ¢ andd) and one task of length — 5¢ (with id ¢). In the
solution built by the algorithm, at least two tasks of lengthave a completion time larger than or equal to 4. We can
observe that if one of them bids— 4¢ or 3 — 3¢ then it will necessarily be executed on the same machineshks
length3 — 5¢ (this is due to the fact that the algorithm &/ (¢ — ¢)-approximate). Since the algorithm is truthful, the
task which lied must be executed after taglotherwise, its completion decreased).

Consider the instanck with four tasks of length 2 (with identification numbersb, ¢ andd) and one task of
length3 — 4e¢ (with id ¢). In the solution built by the algorithm, at least two task$emgth 2 have a completion time
larger than or equal to 4. If one of them bitls- 3¢ or 3 — 5¢ then it will necessarily be executed on the same machine
as taske of length3 — 4¢. Since the algorithm is truthful, the task which lied muselecuted after task

Consider the instancg; with four tasks of length 2 (with identification numbersb, ¢ andd) and one task of
length3 — 3¢ (with id €). In the solution built by the algorithm, at least two taskéemgth 2 have a completion time
larger than or equal to 4. If one of them bitls- 4¢ or 3 — 5¢ then it will necessarily be executed on the same machine
as taske of length3 — 3e. Since the algorithm is truthful, the task which lied museecuted after task

Let Ty (resp.T», T3) be the set of tasks of length 2 whose completion time is egulakrger than or equal to 4 in
the solution returned by the algorithm whBan(resp.I», I3) is the input. One can find a couple of set§iil, 72, T3}
such that their intersection is non empty. W.l.0.g., we sigepthat taski is in 71 N 75. Now consider the following
instances:

1. (2,a), (2,b),(2,¢), (3 —3¢,d), (3 — 5e,e)
2. (2,a),(2,b),(2,¢), (3 —5e,d), (3 —3¢,e)

For the first instance, we observed that the algorithm ersdiie task of lengtB — 5¢ before the one of length
3 — 3e. For the second instance, we observed the opposite. Thaungé sasks have a unique length, the algorithm
must take into account their identification number to behiwltand (7/6 — ¢)-approximate. O
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